Thermostable xylanase from Thermoascus aurantiacus at ultrahigh resolution (0.89 A) at 100 K and atomic resolution (1.11 A) at 293 K refined anisotropically to small-molecule accuracy.
نویسندگان
چکیده
Thermoascus aurantiacus xylanase is a thermostable enzyme which hydrolyses xylan, a major hemicellulose component of the biosphere. The crystal structure of this F/10 family xylanase, which has a triosephosphate isomerase (TIM) barrel (beta/alpha)(8) fold, has been solved to small-molecule accuracy at atomic resolution (1.11 A) at 293 K (RTUX) and at ultrahigh resolution (0.89 A) at 100 K (CTUX) using X-ray diffraction data sets collected on a synchrotron light source, resulting in R/R(free) values of 9.94/12.36 and 9.00/10.61% (for all data), respectively. Both structures were refined with anisotropic atomic displacement parameters. The 0.89 A structure, with 177 476 observed unique reflections, was refined without any stereochemical restraints during the final stages. The salt bridge between Arg124 and Glu232, which is bidentate in RTUX, is water-mediated in CTUX, suggesting the possibility of plasticity of ion pairs in proteins, with water molecules mediating some of the alternate arrangements. Two buried waters present inside the barrel form hydrogen-bond interactions with residues in strands beta2, beta3, beta4 and beta7 and presumably contribute to structural stability. The availability of accurate structural information at two different temperatures enabled the study of the temperature-dependent deformations of the TIM-barrel fold of the xylanase. Analysis of the deviation of corresponding C(alpha) atoms between RTUX and CTUX suggests that the interior beta-strands are less susceptible to changes as a function of temperature than are the alpha-helices, which are on the outside of the barrel. betaalpha-loops, which are longer and contribute residues to the active-site region, are more flexible than alphabeta-loops. The 0.89 A structure represents one of the highest resolution structures of a protein of such size with one monomer molecule in the asymmetric unit and also represents the highest resolution TIM-barrel fold structure to date. It may provide a useful template for theoretical modelling studies of the structure and dynamics of the ubiquitous TIM-barrel fold.
منابع مشابه
Thermostable recombinant xylanases from Nonomuraea flexuosa and Thermoascus aurantiacus show distinct properties in the hydrolysis of xylans and pretreated wheat straw
BACKGROUND In the hydrolysis of lignocellulosic materials, thermostable enzymes decrease the amount of enzyme needed due to higher specific activity and elongate the hydrolysis time due to improved stability. For cost-efficient use of enzymes in large-scale industrial applications, high-level expression of enzymes in recombinant hosts is usually a prerequisite. The main aim of the present study...
متن کاملUse of a Mixture of Thermophilic Enzymes Produced by the Fungus Thermoascus aurantiacus to Enhance the Enzymatic Hydrolysis of the Sugarcane Bagasse Cellulose
Problem statement: The production of hydrolytic enzymes by T. aurantiacus has been performed under solid-state fermentations using lignocellulosic materials. The influences of the inoculum size and of the fermentation medium on the production of hemicellulases and cellulases were studied. Filtrates from the cultures were used to hydrolyze a pulp of sugarcane bagasse and the produced enzymes wer...
متن کاملInvestigating Cellulase Producing Potential of Two Iranian Thermoascus aurantiacus Isolates in Submerged Fermentation
Cellulose is the most plentiful renewable biopolymer in nature which could be utilized by cellulolytic enzymes. Cellulases are among the most important groups of industrial enzymes which are widely consumed in biofuel production, pulp and paper, textile, and detergent industries. These enzymes can support a cleaner environment through reducing chemical processes in mentioned industries and agro...
متن کاملXylose induces cellulase production in Thermoascus aurantiacus
Background Lignocellulosic biomass is an important resource for renewable production of biofuels and bioproducts. Enzymes that deconstruct this biomass are critical for the viability of biomass-based biofuel production processes. Current commercial enzyme mixtures have limited thermotolerance. Thermophilic fungi may provide enzyme mixtures with greater thermal stability leading to more robust p...
متن کاملA specific short dextrin-hydrolyzing extracellular glucosidase from the thermophilic fungus Thermoascus aurantiacus 179-5.
The thermophilic fungus Thermoascus aurantiacus 179-5 produced large quantities of a glucosidase which preferentially hydrolyzed maltose over starch. Enzyme production was high in submerged fermentation, with a maximal activity of 30 U/ml after 336 h of fermentation. In solid-state fermentation, the activity of the enzyme was 22 U/ml at 144 h in medium containing wheat bran and 5.8 U/ml at 48 h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Acta crystallographica. Section D, Biological crystallography
دوره 59 Pt 1 شماره
صفحات -
تاریخ انتشار 2003